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Abstract

Existing dynamic capital structure models are based on a single barrier determining bankruptcy, e.g.

overindebtedness or illiquidity. However, it is observable that these approaches do not perform well em-

pirically and omit a variety of constraints faced by equity and debt holders. This article incorporates these

constraints examining corporate debt value and optimal capital structure in a double barrier world with

knock-in and knock-out barrier options. The results elucidate why considering only one barrier distorts

the estimates of risks for default and bankruptcy. In fact, the single barriers illiquidity and overindebt-

edness take the role of boundary conditions. Incorporating both conditions in this novel double barrier

approach allows for capital structure estimations that are in better accordance with empirical findings.

Beyond capital structure theory, other fields of economics and even medical science or the humanities are

in context of problems that can be solved with such a double barrier approach.
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1. Introduction

Barrier options play a central role in several fields of science, particulary in economics. In the study

of corporate finance the equity value can be determined with the help of a call barrier option on the

firm value that is activated only if the firm value touches a predetermined barrier, i.e. the bankruptcy

trigger. Analogously, the same holds for the debt value with the help of a put barrier option. Certainly,

debt values and capital structure are interlinked variables - it is virtually impossible to determine the debt

value without knowing the firm’s capital structure and vice versa. But both the debt value and the capital

structure are constituent parts affecting the firm’s risk for default and bankruptcy. Thus, for reasonable

corporate valuation it is indispensable to characterize these influencing variables correctly. If we consider

only a single barrier, e.g. illiquidity or overindebtedness, the underlying valuation problem is not very

difficult (c.f. Merton (1974), Rubinstein and Reiner (1991)) and already solved. However, we observe

that firms are exposed to a variety of constraints. Capturing illiquidity and overindebtedness in one

single model leads directly into a double barrier approach. Its syndetic path-dependency owe a modus

operandi that is less straightforward than dealing only with a single barrier. Valuing a double barrier

option and thereby a firm that faces changing payouts whenever the underlying process hits either of two

well-defined boundaries illiquidity and overindebtedness requires extensive results of the mathematical

stochastic calculus.

This article examines corporate debt value and optimal capital structure in a double barrier world

with knock-in and knock-out barrier options. Besides, it gets to the bottom of the discrepancy between

theoretical forecasts and empirical observations in context of capital structure theory. Therefore, separate

research approaches are combined into one single model. The upper boundary represents the illiquidity

barrier and catches, e.g. the distinguished approaches of Couch et al. (2012) and Kim et al. (1993).

The lower barrier stands for overindebtedness and thus includes the pioneering work of Leland (1994).

The derived results show that the novel combination generates results in-between the particular single

constraints.

Traditional capital structure theory states that insolvency triggers are an important determinant of

optimal capital structure theory. Leland and Toft (1996) include the maturity of debt into the standard

Leland model. Goldstein et al. (2001) extend the model further by basing it on a stochastic EBIT-process

and allowing for an option to increase debt (dynamic capital structure). Hackbarth et al. (2007) dive

deeper into the debt structure explaining the relation of bank loans and market debt. Titman and Tsy-

plakov (2007) present a model that allows for dynamic adjustment of both its capital structure and its

investment choices. However, as all of these models consider only one single bankruptcy trigger risks

for default and bankruptcy are either over- or underestimated. A pure illiquidity trigger overestimates the

bankruptcy risk since in case of delay in payment only a minority declare bankruptcy1. On the other hand,

1 Please note that in case of illiquidity we exclude the assumptions of deep pockets of the equity holders.
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the trigger that bankruptcy occurs if and only if the firm is overindebted seems too weak since it is not

always reasonable on the side of the equity holders to make some additional payments. These imprecise

estimations lead to the influential effect that default risks of entire industries are wrongly ranked.

This article, based on the pricing formulas of Pelsser (2000), provides the first model that investigates

corporate valuation and optimal capital structure decisions in a double barrier framework with knock-

in and knock-out options. We are able to model both an illiquidity or covenant trigger for debt and an

overindebtedness trigger determined endogenously by the equity holders. Hence, we provide a framework

that best reflects realistic triggering events of default and bankruptcy. As expected our solutions to the

optimal capital structure problem lie in-between the two classic approaches. By empirically testing our

model for firms publicly listed in the US, we gain evidence that incorporating both triggers explains

observable capital structures significantly better than existing models do.

Beyond that, we develop our double barrier framework in a general setting which is applicable in

other fields of research where the object of investigation is faced with barriers. For instance, the problem

of modeling optimal counter-cyclical policies (monetary policy and government investment programs)

could be treated in such a framework. The diffusion of a flu is another example from biology: The flu

stays normally within an endemic steady state but can suddenly become epidemic (or indeed pandemic

like the 1918 flu pandemic) if its infection rate surpasses a special critical value, and it can also return to

endemic state.

The generality of the application spectrum of double barrier options affects directly the composition

of this article. Thus our structure is as follows: section 2 introduces the general model and depicts an

intuitive access. General requirements of the two boundaries are provided. Followed by a profound

analysis of the state prices this section ends with a general payout structure. In section 3 we follow

the same structure with the difference that each subsection is applied to the special case of corporate

valuation with illiquidity as the upper knock-in barrier and overindebtedness as the lower knock-out

barrier. Thus, next to some specific mathematical requirements the exact barriers in case of illiquidity

and overindebtedness are developed. Subsequently, the specific state prices are derived. Concluding

this section, we develop debt value, tax benefits, bankruptcy costs, illiquidity expenses, net benefits, and

equity value functions in vectorial writing. Section 4 deals with the analytic application of the model.

Besides a differentiation between exogenous and endogenous variables, this section includes guidance

in terms of derivations for calculating the optimal bankruptcy trigger and the optimal coupon payment.

References and comparisons to the single barrier models are made and possible extensions of our model

are highlighted. The section ends with an empirical test of our model results versus the observed leverage

ratios of firms of all NAICS sectors publicly listed in the US. Section 5 concludes the article.
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2. The General Double Barrier Model

2.1. Mathematical Requirements for the General Model

The assumptions we make about the nature of uncertainty are standard and we try to state them as

general as possible. There exists a probability space (Ω, F , P, (Ft)t≥0) supporting a standard Brownian

motion Wt, where Ω is the sample space, F the σ-algebra and P the corresponding probability measure.

We denote the available information at time t, with t ∈ [0,∞), by the filtration Ft ⊂ Fs with 0 ≤ t < s

where Ft describes the augmented σ-algebra generated by Wt.

We consider a stochastic process (Rt)t∈[0,∞), e.g. a revenue process that can be characterized by the

following stochastic differential equation (SDE)

dRt = µRtdt + σRtdWt (2.1)

where µ ∈ R is the (constant) growth rate, σ ∈ R+
0 is the corresponding (constant) volatility of the

stochastic process Rt, and Wt is a standard Brownian motion for t ∈ [0,∞). The index t represents the

time horizon, i.e. t ∈ [0,∞). The initial value R0 needs to be positive, i.e. R0 ∈ R
+.

2.2. Default Triggers - An Intuitive Access to the General Model

Let us consider a stochastic process that is faced with different boundary conditions BU , Bu and Bl.

We assume that the starting point of the process R0 is greater than Bu. The initial area is called liquidity

state (LS ). At the very moment when the process hits the initial barrier Bu the process leaves LS and

enters illiquidity state (IS ). When the process hits Bu for the first time we call the first hitting time θu0 .

Continuing from the value Bu in time θu0 there are three basic options: (i) The process runs directly

into the bankruptcy state (BS ) in θl, hits the lower barrier Bl and ceases to exist. (ii) The process lives

until infinity between the two boundaries BU and Bl. Finally, (iii) The process leaves IS by hitting the

upper-upper barrier BU and reenters LS at time θU0 .
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Figure 1: Introduction to the General Model
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This figure depicts a stochastic process that starts in the liquidity state (LS). The process runs into illiq-
uidity state (IS) at the moment θu0 when the lower-upper barrier Bu is hit. Continuing in IS, the process
reenters LS in θU0 by hitting the upper-upper boundary BU . In θu1 the process touches the lower-upper
boundary Bu again and falls back into IS. Finally, the process is killed in θl, i.e. the process runs into
bankruptcy state (BS) and hits thus the lower barrier Bl.

The instant of time where the process enters another state are mathematically known as stopping

times2. Obviously, there is no need to subscript the hitting time θl due to the simple fact that the process

is killed at the precise moment when it hits Bl. On the other hand, there is an obligation to subscript θui

and θUi with i ∈ N0, respectively because Bu and BU could be hit countably infinite times almost surely

without hitting Bl. In our framework the barriers Bu, BU and Bl are constant in time. Please notice that

there are only two possibilities: Either Bu is an valid barrier, i.e. Bu is on and this implies that BU and Bl

are both switched off or vice versa (c.f. figure 1).

2.3. State Prices in the General Model

Before we can adapt the aforementioned framework to an optimal capital structure model, we need

to derive the state prices of our defined states. State prices reflect the present value of an asset that pays

1$ if a certain state is reached. In other words, state prices represent the probability of entering a certain

state discounted back to today. Figure 2 illustrates our methodology.

2 In the following named as hitting times. For a formal definition c.f. Definition 2.1.
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Figure 2: State Prices p0, p1, p2, and p3 in the General Model
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θui represents an arbitrary point in time at which the firm runs into illiquidity state (IS) coming from
liquidity state (LS). θUi represents an arbitrary point in time at which the firm runs into LS coming from
IS. θl is the exact point in time at which bankruptcy occurs. R0 is the starting point of the stochastic
process. BU and Bu is the upper knock in barrier option, respectively. Bl is the lower knock out barrier.
The field on a lighter grey background LS represents the LS . In contrast the field on a darker grey
background IS symbolizes IS . The parallel dashed lines indicate that the given figure is only an excerpt
of the underlying process.

The first graph sketches a firm that runs from LS into IS . This is abbreviated by p0. The second

shows the path of a firm that runs from IS into LS , denoted by p1. The third picture represents the path

of a firm that goes bankrupt entering BS , labeled with the state price p2. Note that having been in IS is

a crucial prerequisite for running into BS . Obviously, the firm is bankrupt at the very moment when the

stochastic process Rt equals Bl for an arbitrary t ∈ [0,∞)3. Finally, p3 is represented in the last figure

that shows again a firm running from LS to IS. The difference to the first picture is that the last represents

the behaviour of one path in the middle of a firm’s life, while the first illustrates only a possible path

development at the beginning of a firm’s life. Without loss of generality the following figure comprises

all possible development opportunities of a firm in a double barrier option frame work, i.e. a framework

with a changing upper knock-in barrier characterized by the lower-upper barrier Bu and the upper-upper

barrier BU , respectively and a lower knock-out barrier Bl.

Having given an intuitive access to the state prices, it is indispensable to provide a proper definition

of p0, ..., p3. We start with formally defining the hitting times θui , θ
Ui and θl

3 To be more precise, this happens if and only if t = θl (c.f. Def. 2.1).
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Definition 2.1 (Hitting Times). Given three boundary constraints Bl, Bu, BU with Bl ≤ Bu < BU , the
corresponding hitting times are defined as follows for i ∈ N0:

θl : = inf{t ≥ 0 |Rt = Bl}

θu0 : = inf{t ≥ 0 |Rt = Bu}

θU0 : = inf{t ≥ θu0 |Rt = BU ∧ Rs > Bl for all s ∈ [θu0 , t]}

θu1 : = inf{t ≥ θU0 |Rt = Bu ∧ Rs > Bl for all s ∈ [θU0 , t]}
...

θui : = inf{t ≥ θUi−1 |Rt = Bu ∧ Rs > Bl for all s ∈ [θUi−1 , t]}

θUi : = inf{t ≥ θui |Rt = BU ∧ Rs > Bl for all s ∈ [θui , t]}.

Remark 2.2. Technically speaking, for the definition of θui we can omit the constraint Rs > Bl for all s ∈
[θUi−1 , t]. So the following remains

θui : = inf{t ≥ θUi−1 |Rt ≤ Bu}. (2.2)

Owing to readability we do not suppress this constraint, since we want to make sure that the above given
nonempty stopping times θui and θUi for i ∈ N0 exclude bankruptcy.

Remark 2.3. If θui ≤ θl ≤ θ
Ui , then θui+1 = θUi = ∅.

Proof. Assume that θui ≤ θl ≤ θ
Ui . This yields that θUi = ∅. Simply applying the definition for θui+1 we

have

θui+1 = inf{t ≥ θUi |Rt = Bu ∧ Rs > Bl ∀s ∈ [θUi , t]}

= inf{t ≥ θUi |Rt = Bu}

= ∅.

The last equality holds due to the simple fact that Rt for all t ≥ θl and θUi ≥ θl owing to the above
mentioned assumption. �

Based on the aforementioned insights, we define the state prices p0, p1, p2, p3 as follows:

Definition 2.4 (State Prices p0, ..., p3).
p0 is the price of a knock out barrier option that pays 1 $ in θu0 starting in t = 0 (with the correspond-
ing ordinate value R0) when the stochastic process (Rt)t∈[0,∞) hits the lower-upper barrier Bu, i.e. p0
represents the discounted probability of hitting Bu in θu0 .

Analogously, p1 is the price of 1 $ in θUi starting in θui for all i ∈ N0 (with the corresponding ordinate
value Bu) when the stochastic process (Rt)t∈[0,∞) hits the upper-upper barrier BU without hitting the lower
barrier Bl.

p2 is the price of 1 $ in θl starting in θui for alle i ∈ N0 (with the corresponding ordinate value Bu)
when the stochastic process (Rt)t∈[0,∞) hits the lower barrier Bl without hitting the upper-upper barrier
BU .

Finally, p3 is the price of a knock out barrier option that pays 1 $ in θui+1 starting in θUi for all i ∈ N0
(with the corresponding ordinate value BU) when the stochastic process (Rt)t∈[0,∞) hits the lower-upper
barrier Bu.
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2.4. Contingent Claims in the General Setting

Now we have the instruments to consider a general quantifiable model generating the following payout

structure. Without loss of generality this excerpt shows all possible states of a firm that has not hit Bl yet.

Figure 3: General Payout Structure of a Stochastic Process
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The figure depicts a general payout structure that can be generated in a double barrier frame-
work with liquidity state (LS) , illiquidity state (IS) and bankruptcy state (BS). If the under-
lying process is in LS the payout equals A1. In case of IS the generated payout is A2.Hitting
the lower boundary Bl the payout accords with A3. The same holds for the lower-upper bar-
rier Bu and the payout A4 and the upper-upper barrier BU with the payout A5, respectively.

The capital letters A j, j = 1, ..., 5 are place holders for an arbitrary payout subject to the stochastic

process (Rt)t∈[0,∞). The area A1 comprises an arbitrary payout of Rt with t ∈ [0, θu0 ] ∪ [θUi , θui+1 ] with

i ∈ N0. This is the payout in LS . A2 represents the payout in IS that is realized if and only if the

stochastic process lies in the middle of the barriers Bl and BU until the process hits one of them, i.e. A2

is given if and only if t ∈ [θui , θ
Ui ] ∪ [θu j , θl] with i < j ∈ N. Note that there is no need that Bl equals

A3 and BU equals A5, respectively. The payout A3 is given if and only if t = θl. This is equivalent to the

condition that Rt = Bl for an arbitrary t ∈ [0,∞). Analogously A4 is generated if and only if Rt = Bu for

all t ∈ [0,∞), i.e. t = θui with i ∈ N0. Finally, the payout A5 is realized if and only if t = θUi with i ∈ N0.
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Next we derive the expected values of the payouts we introduced, and we start with A1.

E[A1] = A1[(1 − p0)+ , value until the first liquidity crisis θu0

p0 p1(1 − p3)+ , value after leaving first IS θU0 and until θu1

p0 p1 p3 p1(1 − p3)+ , value after θU1 and until θu2

...]

= A1[(1 − p0) + p0 p1(1 − p3)
∞∑

i=0

pi
1 pi

3]

= A1[(1 − p0) +
p0 p1(1 − p3)

1 − p1 p3
].

From now on we say pr0
A1

:= (1 − p0) +
p0 p1(1−p3)

1−p3 p1
is the state price of the payout A1 starting in t = 0.

Analogously, we calculate the expected value for the payout A2.

E[A2] = A2[p0(1 − p1 − p2)+ , value after θu0 until θU0

p0 p1 p3(1 − p1 − p2)+ , value after θu1 until θU1

...]

= A2[p0(1 − p1 − p2)
∞∑

i=0

pi
1 pi

3]

= A2[
p0(1 − p1 − p2)

1 − p1 p3
].

So the state price of the payout A2 starting in t = 0 is given by pr0
A2

:= p0(1−p1−p2)
1−p1 p3

. Analogously, we

calculate the expected value for the payout A3.

E[A3] = A3[p0 p2+ , going bankrupt in [θu0 , θ
U0 ]

p0 p1 p3 p2+ , going bankrupt in [θu1 , θ
U1 ]

...]

= A3[p0 p2

∞∑
i=0

pi
1 pi

3]

= A3[
p0 p2

1 − p1 p3
].

From now on we say pr0
A3

:= p0 p2
1−p1 p3

is the state price of the payout A3 starting in t = 0. Calculating the
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expected value for the payout A4 yields

E[A4] = A4[p0+ , touching Bu in θu0

p0 p1 p3+ , touching Bu in θu1

...]

= A4[p0

∞∑
i=0

pi
1 pi

3]

= A4[
p0

1 − p1 p3
]

where pr0
A4

:= p0
1−p1 p3

is the state price of the payout A4 starting in t = 0. Finally, we calculate the expected

value for the payout A5.

E[A5] = A5[p0 p1+ , touching BU in θU0

p0 p1 p3 p1+ , touching BU in θU1

...]

= A5[p0 p1

∞∑
i=0

pi
1 pi

3]

= A5[
p0 p1

1 − p1 p3
].

From now on we say pr0
A5

:= p0 p1
1−p1 p3

is the state price of the payout A4 starting in t = 0. Now we are able

to convert the one dimensional setup into vectorial calculus. Next to a better readability this brings the

advantage that we can compress our notation to a minimum. Therefore, let ~PO denote the general payout

structure and ~pr0 the according state prices starting in t = 0. The first row represents the payout A1 and

the state price pr0
A1

, respectively. In conclusion, we have

~PO :=



A1

A2

A3

A4

A5


~pr0 :=



pr0
A1

pr0
A2

pr0
A3

pr0
A4

pr0
A5


=



(1 − p0) +
p0 p1(1−p3)

1−p1 p3
p0(1−p1−p2)

1−p1 p3
p0 p2

1−p1 p3
p0

1−p1 p3
p0 p1

1−p1 p3


. (2.3)

To illustrate our approach let us consider the following example: If a firm is liquid it distributes

dividends of 5$ to the owner, i.e. A1 = 5$. If it has got any pecuniary difficulties the dividends will be

reduced to 2$ (payout in A2). In case of bankruptcy no dividends will be distributed anymore (A3 = 0$).

In the very moment the firm runs from LS to IS and vice versa, no payments to the owner are made.
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Summarizing yields 4

~PO
ᵀ

=
(
5$ 2$ 0$ 0 0$

)
. (2.4)

If we want to calculate the expected value of the dividend of the owner, all we have to do is to calculate
~P0 ~pr0, i.e.

E[ ~P0
ᵀ
~pr0] = A1 · pr0

A1
+ A2 · pr0

A2
+ ... + A5 · pr0

A5
(2.5)

= 5pr0
A1

+ 2 · pr0
A2
. (2.6)

3. The Capital Structure Model reflecting Illiquidity and Overindebtedness (IO-Model)

3.1. Basic Framework of the IO-Model

We assume the mathematical requirements stated in section 2.1 are fulfilled. The market is free of

arbitrage opportunities, and for each subjective probability measure P there exists an equivalent measure

Q called the risk-neutral probability measure.

We consider a firm whose instantaneous revenues (Rt)t∈[0,∞) follow a geometric Brownian motion

under the risk neutral pricing measure, i.e.

dRt = µRtdt + σRtdWQt , (3.1)

where µ is the revenue’s growth rate, σ is the corresponding volatility, and Wt is a standard Brownian

motion under the risk-neutral measure. The initial value of revenue is R0 > 0.

The firm faces variable costs captured by a deterministic ratio of revenues γ and deterministic fixed

costs F independent of revenues. Thus, earnings before interest and taxes EBITt in our setting are defined

by,

EBITt = Rt(1 − γ) − F ∀t ∈ [0,∞). (3.2)

The risk free rate is captured by r. Moreover, we assume a flat corporate tax rate τ and do not

consider personal taxes. Similar to other dynamic models (e.g., Hackbarth et al., 2007), we presuppose

the unlevered cash flow to be EBITt(1 − τ) for all t ∈ [0,∞) and ignore other cash-relevant items (e.g.

depreciations, capital expenditures or changes in net working capital) for simplicity.5

4 ᵀ is the symbol for the vector transpose ~v ᵀ of ~v
5 We do so without a loss of generality. The inclusion of these items in our model is simple but inflates the cash flow equation

without adding further insights to our underlying research questions.
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The conditional expected unlevered firm value subject to Ft E[Vt | Ft] in such a setting is

E[Vt | Ft] =

∫ ∞

t
e−r(s−t) (Rs(1 − γ) − F) (1 − τ)ds (3.3)

=
Rt(1 − γ)(1 − τ)

r − µ
−

F(1 − τ)
r

. (3.4)

Please note that we will suppress the conditional lettering Ft due to readability. Whenever we will con-

sider an expected value we deal with a conditional expected value. The corresponding σ-algebra is given

by the context and indicated by Rt
6. We need to split the variable part (Rt(1− γ)(1− τ)) and the fixed part

(F(1− τ)) of the cash flow in (3.4) as the fixed part is not expected to grow with µ over time but to remain

constant.

In our model we denote the market value of debt as D(V) and follow the classic assumption of debt

being issued as a console bond with constant coupon payment C to infinity (c.f. Leland (1994), Goldstein,

Ju, and Leland (2001), Strebulaev (2007) et al.).

3.2. Default Triggers in the IO-Model

Existing dynamic models in corporate finance involve only one lower boundary for the underlying

stochastic process. In Leland (1994) bankruptcy is triggered if the discounted conditional expected asset

value Vt falls to a certain level VB which is endogenously derived by the investors in order to maximize

their equity value (endogenous default trigger). The second type of default trigger is exogenously deter-

mined by a covenant within the debt contract or by liquidity constraints. In such a setup the firm defaults

either because it violates a certain debt covenant or because the firm and equityholders have no spare cash

to pay their current cash obligations (i.e., redemption payments and/or interest payments).

The exogenous trigger is less often applied in literature (see e.g., Kim et al., 1993; Couch et al., 2012).

Usually it is argued that it causes firms to cease their operations although the equity value is still positive.

However, rationale equityholders would be ready to fund the firm as long as the market value of their

investment exceeds the debt obligation. Only if the described condition is not fulfilled, equityholders

will file for bankruptcy (Leland, 2006).7 Thus, the vast majority of existing dynamic models relies on

the endogenous trigger and ignores the exogenous one (see e.g., Leland and Toft, 1996; Goldstein et al.,

2001; Hackbarth et al., 2007).

However, in reality we frequently observe that debtholders protect their claims with well-defined fi-

nancial covenants allowing them to cancel the debt (and request a full redemption) whenever the covenant

is triggered. While the option to cancel the debt is usually not exercised, the triggering event provides the

opportunity to adjust (or to renegotiate if not pre-specified) the promised yield of debt and to influence

6 It should be remembered here that E[V0 | F0] = E[V0]
7 A crucial assumption for this policy is that equityholders can access external funds whenever the firm is threatened by illiquid-

ity, i.e., they have “deep pocket”. This assumption opens the field for arguments preferring the exogenous trigger (no external
funds available or if it may be costly or difficult due to timing constraints or covenants in the debt contract).
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strategic decisions regarding the firm (Achleitner et al., 2012). Moreover, entering this state, which we

call illiquidity state , generates additional direct costs (e.g., lawyer or advisory expenses, discounts when

selling assets) and indirect costs (e.g. loss of clients, disproportionate dilution by additionally raised

equity) to the firm.

As additional covenant restrictions and liquidity constraints are ignored by traditional dynamic trade-

off models it is not surprising that these models imply excessively high optimal leverage ratios compared

to reality. Strebulaev (2007) emphasizes this fact and proposes the so far only known model combining

both boundaries. He does not attempt to solve the model analytically and to derive general theoretical

proofs but to calibrate the model for simulating firms’ capital structure paths. His results are of particular

importance for empirical tests of dynamic capital structure models.

We are able to model both, the exogenous covenant or liquidity boundary (Bu smaller upper barrier

from above and BU greater upper barrier from below) and the endogenous bankruptcy boundary (Bl from

above), and to derive a closed-form analytic solution allowing us to draw general theorems regarding

the choice of optimal capital structures. To the best of the authors knowledge this is the first attempt to

model the optimal capital structure in a double barrier option framework. We state our first model-specific

assumption:

Assumption 3.1. The stochastic revenue process of our firm Rt)t∈[0,∞) starts in liquidity state LS at R0
above the lower- upper boundary Bu. When Rt hits Bu for some t ∈ [0,∞) the firm switches into illiquidity
state IS , and Rs continues facing an upper-upper boundary BU as well as a lower boundary Bl for some
t < s. The firm reenters LS if and only if Rs hits BU before it hits Bl for t < s. The number of switching
events between LS and IS is not restricted. Given the firm stays in IS , the bankruptcy state BS is
triggered if and only if Rs hits Bl before it hits BU for t < s. At the time where Rs = Bl for t < s the firm
files bankruptcy and the stochastic process Rs stops, i.e. Rs is not defined for t < s,.

Figure 1 in section 2.2 illustrates the general setting of default triggers in our model. An important

prerequisite in this setting is the relation Bl ≤ Bu < BU which we prove in Lemma 3.6 after having derived

explicit expressions of the boundaries.

We base the covenant boundary on the interest coverage ratio, unlevered cash flow to firm EBIT (1−τ)

divided by coupon payments C, which must not fall below the covenant value δ and state Bu:

Lemma 3.2. The firm will enter illiquidity state (IS) if EBIT (1 − τ) ≤ δC, which corresponds to Rt ≤ Bu

where Bu = (δC + F(1 − τ)) / ((1 − γ)(1 − τ)).

Proof. We substitute Equation (3.2) into the covenant definition from above and rearrange for Rt:

EBIT (1 − τ) = δC
(Rt(1 − γ) − F) (1 − τ) = δC

Rt =
δC + F(1 − τ)
(1 − γ)(1 − τ)

.
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Since the covenant definition (1 − τ)EBITt = δC corresponds to Rt = Bu, we have:

Bu :=
δC + F(1 − τ)
(1 − γ)(1 − τ)

�

The starting point of the revenue process R in illiquidity state (IS ) is Rθu which can be substituted

by Bu: Rθu = Bu. We capture the consequences for a firm entering (IS) in our second model-specific

assumption.

Assumption 3.3. When the firm enters illiquidity state (IS ), certain default expenses occur, e.g. due to
customers that stop buying the firms’ products, which we assume to be a proportion ε of E[Vθui

| Fθui
].

Moreover, as long as the firm remains in IS (Bl < Rt < BU with t ≥ θui ) the debtholders demand penalty
interest Cil with Cil > C. Consequently, the covenant boundary BU for the revenue process coming from
below is greater than the covenant boundary Bu for the revenue process coming from above, i.e. Bu < BU .
If the firm returns from IS to liquidity state LS , the penalty interest payments will stop and the regular
coupon payment C will be enforced.

Assumption 3.3 allows us to derive BU explicitly in our setting:

Lemma 3.4. The firm will reenter liquidity state LS if EBIT (1−τ) = δCil with t ≥ θui , which corresponds
to Rt = BU where BU = (δCil + F(1 − τ)) / ((1 − γ)(1 − τ)) with t ≥ θui .

Proof. We substitute Equation (3.2) into the adjusted covenant definition from above and rearrange for
Rt:

EBIT (1 − τ) = δCil

(Rt(1 − γ) − F) (1 − τ) = δCil

Rt =
δCil + F(1 − τ)
(1 − γ)(1 − τ)

.

Since the covenant definition EBIT (1 − τ) = δCil corresponds to Rt = BU , we have:

BU :=
δCil + F(1 − τ)
(1 − γ)(1 − τ)

. �

Note that for δ = 1 − τ the boundaries Bu and BU do not only represent covenant triggers but, indeed,

illiquidity triggers, i.e., the firm is not able to pay its cash obligations.

The last possibility to be detailed is when the firm runs from IS to bankruptcy state (BS ). In triggering

bankruptcy we follow the classic assumption of Leland (1994) which is used in many more models (e.g.,

Leland and Toft, 1996; Goldstein et al., 2001; Hackbarth et al., 2007; Danis et al., 2014): If the expected

asset value E[Vt] falls to a certain level VB where liquidating the firm is optimal, i.e., value maximizing for

the equityholders, the firm will file for bankruptcy. VB is endogenously chosen by maximizing the equity

value. In section 4 we demonstrate how to derive VB. For now we consider it a constant parameter. The

difference of our setting compared to existing models is that our underlying stochastic process regards

the revenue and, thus, we need to transfer the classic bankruptcy condition E[Vt] = VB to the condition

Rt = Bl. Lemma 3.5 presents the transformation.
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Lemma 3.5. The firm will file for bankruptcy if E[Vt] = VB with t ≥ θui , which corresponds to Rt = Bl

where Bl =
((

VB +
F(1−τ)

r

)
(r − µ)

)
/ ((1 − γ)(1 − τ)) with t ≥ θui .

Proof. We substitute equation (3.4) into the bankruptcy trigger definition from above and rearrange for
Rt:

E[Vt | Ft] = VB

Rt(1 − γ)(1 − τ)
r − µ

−
F(1 − τ)

r
= VB.

Since the bankruptcy definition E[Vt] = VB corresponds to Rt = Bl, we have by simple rearrangements:

Bl :=

(
VB +

F(1−τ)
r

)
(r − µ)

(1 − γ)(1 − τ)
�

Finally, we prove the necessary relationship of our triggers in Lemma 3.6.

Lemma 3.6. The covenant boundary BU , upper-upper boundary to the revenue process Rt if the firm
stays in illiquidity state (IS ), is strictly greater than the covenant boundary Bu, lower-upper boundary
to Rt if the firm stays in liquidity state (LS ). Moreover, Bu is greater than or equal to the bankruptcy
boundary Bl, lower boundary to Rt if the firm stays in IS . Thus, we have Bl < Bu < BU .

Proof.

BU > Bu (3.5)
δCil + F(1 − τ)
(1 − γ)(1 − τ)

>
δC + F(1 − τ)
(1 − γ)(1 − τ)

(3.6)

Cil > C. �

This holds since Cil > C by definition.

Bu > Bl (3.7)

δC + F(1 − τ)
(1 − γ)(1 − τ)

>

(
VB +

F(1−τ)
r

)
(r − µ)

(1 − γ)(1 − τ)
(3.8)

δC + F(1 − τ) >
(
VB +

F(1 − τ)
r

)
(r − µ) (3.9)

VB <
δC + F(1 − τ)

r − µ
−

F(1 − τ)
r

. (3.10)

The last inequality proves the statement. Considering in a first step F to be equal to zero the upper

limit for considering bankruptcy VB on the part of the equity holders is simply δC
r−µ . They have to subtract

C on their cash flow and add in case of tax advantages τC to their cash flow in a continuous setting. This

equals δC
r−µ in t = 0. So δ covers the tax advantage. Its lower limit is given by 1− τ just simply owing that

no more tax benefits can be generated in our model. For δ > (1 − τ) the tax effect is strengthened. The

same holds for the fixed term F(1−τ)
r−µ −

F(1−τ)
r which has the function of an additive term.

As pointed out in section 2, LS and IS can alternate infinite times but the process will stop immedi-

ately as soon as the bankruptcy trigger Bl is hit. While the starting point of Rt in the first LS is special
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(R0), the starting points of Rt for the subsequent IS and LS are repetitive (Rθu and RθU , respectively). This

is an important feature for valuing the levered firm in section 3.4.

3.3. State Prices in the IO-Model

In this subsection we investigate the specific state prices p0, p1, p2, and p3, which we introduced in

Definition 2.4, for our IO-model. As a reminder, p0 and p3 can be seen as assets, or more specifically as

perpetual, down-and-in, cash-at-hit-or-nothing, single-barrier options which pay $1 when the stochastic

process Rt hits the barrier Bu which is below the initial value of the stochastic process. p0 and p3 only

differ with respect to its initial values which are R0 and RθU = BU , respectively. The pricing formula for

such an option type is well known8 and, thus, can be applied to

p0 =

(
Bu

R0

)y

(3.11)

and analogously to

p3 =

( Bu

BU

)y

, (3.12)

where

a := µ −
1
2
σ2, b :=

√
a2 + 2σ2 · r, y :=

a + b
σ2 . (3.13)

Explicitly pricing p1 and p2 is less trivial as we deal with perpetual, cash-at-hit-or-nothing, double

barrier options. The lower barrier is the bankruptcy boundary Bl and the upper barrier is the covenant

boundary BU . p1 and p2 differ with respect to its payout structure as the latter pays $1 when the lower

barrier is hit before the upper barrier has been hit and vice versa. Pelsser (2000) provides a pricing

formulas for both structures in finite time which can be easily extended to a perpetual setting and applied

to our specific problem. Thus, we have

p1 = exp
{

a(l − x)
σ2

} sinh( b
σ2 x)

sinh( b
σ2 l)

(3.14)

and analogously

p2 = exp
{
−ax
σ2

} sinh( b
σ2 (l − x))

sinh( b
σ2 l)

, (3.15)

8 Rubinstein and Reiner (1991) provide a very intuitive access to valuing such options. Moreover, in their compendium of
exotic options (Rubinstein and Reiner, 1992) they investigate the pricing of many more option types.
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where

x := log
(

Bu

Bl

)
:= log

 δC + F(1 − τ)

VB +
F(1−τ)

r (r − µ)

 , (3.16)

l := log
(

BU

Bl

)
:= log

 δCil + F(1 − τ)

VB +
F(1−τ)

r (r − µ)

 , (3.17)

and a as well as b are as defined in (3.13). Please note that x and l are functions of VB.

3.4. Contingent Claims in the IO-Model

With the individual state prices p0, p1, p2, and p3 at hand, we are able to develop a framework a

firm usually faces when generating a capital structure consisting of debt and equity. We start by deriving

the value of debt, continue with benefits and costs of debt, and conclude the subsection by stating the

resulting levered firm value and equity value. For each of these value components we first discuss its

payoff structure and link it to the payoffs of the general model (A1 to A5). Subsequently, we show how to

arrive at the expected value for each of them applying the state price vector ~pr0 as derived in section 2.4.

Note that the individual state prices p0 to p3 defined in the previous section 3.3 provide the input for ~pr0.

The value of debt is defined by D(V,C,Cil). Due to readability we suppress the coupon payments C

and penalty coupon payments Cil, and simply write D(V). Debt promises a perpetual coupon payment

C whose level remains constant unless the firm enters IS , i.e. the stochastic process Rt hits the covenant

barrier Bu. Thus, in LS the debt value equals C
r (c.f. A1). As long as the firm remains in IS it needs to

pay a permanent penalty coupon Cil unless the firm reenters LS or declares bankruptcy, i.e. enters BS .

The debt value in IS is equal to Cil
r (c.f. A2). Let VB denote the level of the asset value at which the firm

runs into bankruptcy. If bankruptcy occurs, a fraction 0 ≤ α ≤ 1 of value will be lost to bankruptcy costs,

including direct and indirect costs. This leaves the debtholders with value (1 − α)VB (c.f. A3) and the

equityholders with nothing. Note that we will not take any taxes in cases of bankruptcy into consideration,

such as taxes on cancellation of debt. As already mentioned, bankruptcy occurs if and only if the firm ran

into IS previously. In the very moment the firm hits the barrier Bu or BU the value of the debt does not

change (c.f. A4 = A5 = 0). Summarizing, we have the following payout structure ~D for the debt value:

~Dᵀ =
(

C
r Cil (1 − α)VB 0 0

)
. (3.18)

To obtain the expected debt value E[DV(V)] we need to multiply the payout vector ~D with the state price

vector ~pr0 derived in section 2.4. Due to readability, we suppress the expected value notation, so it simply

remains DV(V):

D(V) = ~Dᵀ ~pr0. (3.19)
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Now we consider the value of tax benefits associated with the debt financing. These benefits resemble

a security that pays a constant coupon equal to the tax-sheltering value of interest payments τC as long

as the firm is in LS , τCil in case of IS and nothing in BS . In the very moment the stochastic process hits

a barrier BU , Bu or Bl no tax benefits are generated. As we are concerned with a continuous framework

A4 and A5 equal zero. Thus, we have the following payout structure ~T B:

~T B
ᵀ

=
(
τC
r

τCil
r 0 0 0

)
. (3.20)

Suppressing the expected value notation and the coupon payment, C, and multiplying the appropriate

probability vector yields the following value of tax benefits T B(V):

T B(V) = ~T B
ᵀ
~pr0. (3.21)

Bankruptcy costs BC(V) occur if and only if the firm goes bankrupt. This implies that the stochastic

process Rt equals Bl. Thus, the unlevered firm value at θl is represented by VB =
Bl(1−γ)(1−τ)

r−µ −
F(1−τ)

r

and αVB reflects the bankruptcy costs if bankruptcy is triggered (A3). In no other states bankruptcy costs

occur leaving us with a bankruptcy cost payout structure.

~BC
ᵀ

=
(
0 0 αVB 0 0

)
. (3.22)

In vectorial writing, we represent the value of bankruptcy costs BC(V) as

BC(V) = ~BC
ᵀ
~pr0 (3.23)

Finally, illiquidity expenses IE may occur whenever the firm enters IS . This can ultimately be as-

cribed to two key causes: on the one hand, direct costs of lawyers, banking fees and so on and on the

other hand indirect costs, such as loss of investors’ or customers’ confidence. This will be priced with a

fee in portion ε to the then prevailing unlevered firm value E[Vθui
]. Thus, we have the following payout

structure for IE

~IE
ᵀ

=
(
0 0 0 ε · E[Vθui

] 0
)
. (3.24)

Again, multiplication with the state price vector yields the value of the illiquidity expenses IE(V)

IE(V) = ~IE
ᵀ
~pr0. (3.25)

The total firm value VL(V) (this equals the levered L firm value), is the sum of the four previous terms:
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the firms’ asset value (V), less the bankruptcy costs (BC(V)) and illiquidity expenses (IE(V)), plus value

of tax benefits (T B(V)). For the payout structure of the net benefits NB value we consider in the next step

all terms except of the firms’ asset value V:

~NB = ~T B − ~IE − ~BC

=



τC
r
τCil

r

0

0

0


−



0

0

0

ε · E[Vθui
]

0


−



0

0

αVB

0

0


=

(
τC
r

τCil
r − αVB − ε · E[Vθui

] 0
)ᵀ
.

(3.26)

Taking the conditional expected value V into consideration we have the following total firm value:

VL(V) = V + ~NB
ᵀ
~pr0. (3.27)

The value of equity is the total value of the levered firm less the value of debt.

EV(V) = V + ~NB
ᵀ
~pr0 − ~Dᵀ ~pr0. (3.28)

The contingent claims of our IO-model developed in this section provide safe grounds for exploring

solutions to the optimal capital structure problem in the next section.

4. Analysis of the Optimal Capital Structure in the IO-Model

In general, we are concerned with maximizing the levered firm value with respect to the coupon

payments C subject to certain constraints. The classic constraint introduced by Leland (1994) is that

equityholders choose VB, the asset value where the firm files for bankruptcy, in order to maximize the

equity value. We denote this optimal level of bankruptcy asset value with V∗B which is not exogenously

determined but endogenously obtained by setting the first derivative of the equity value with respect to

VB equal to zero. An additional constraint in our setting is that Cil needs to reflect a certain risk spread ϕ

above the risk free rate r. Thus, our optimization problem can be formally stated as follows:
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VL(V,C,Cil)→ max (4.1)

s.t.
∂EV(V,C,Cil)

∂VB
= 0

Cil − ϕrDV(V,C,Cil) = 0.

All other parameters in our model are exogenously set and can be either observed in reality or empir-

ically estimated. Table 1 summarizes these parameters, suggests how to determine them, and provides an

idea with respect to reasonable value assumptions.

Table 1: Exogenous Parameters of the IO-Model

Exemplary
Para- reasonable
meter Description Rationale values

r risk free rate Average of 10-year Treasury rate (1/1989-7/2016) 0.05
Approach similar to Leland (2004), Huang and Huang (2012)

τ corporate tax rate Federal corporate income tax rate in the US for bigger companies 0.35
Approach similar to similar to Leland and Toft (1996), Strebulaev (2007)

R0 initial value of Firm individual observable parameter $25 bn
the revenue process

µ risk-neutral drift of Firm individual empirical estimation of the real drift µP and 0.02
the revenue process risk-neutral adjustment by µ = µP − (rA − r)

Adjustment similar to Goldstein et al. (2001), Couch et al. (2012)

σ volatility of Firm individual empirical estimation of the revenue’s volatility 0.25
the revenue process

γ variable cost ratio Firm individual empirical estimation of the costs of goods sold ratio 0.70

F fixed costs Firm individual empirical estimation of selling, general and 0.00
administrative expenses

δ interest coverage Firm or debt tranche individual covenant defined in the debt contract. 1 − τ
ratio Natural lower boundary: 1 − τ as this reflects illiquidity.

ϕ spread factor for Estimation based on average spread between the promised 2.50
illiquid firms vs. r yield of Caa-rated firms (highly vulnerable to nonpayment) and

the risk free rate with 10 years maturity (source: Moody’s)

α bankruptcy cost Firm or industry-specific estimation based on empirical models e.g. 0.39 (Food)
ratio We use findings of Glover (2016) 0.49 (machinery)

ε illiquidity cost Firm or industry-specific estimation based on emprical models 0.04
ratio with respect to technical defaults

We use findings of Ertan and Karolyi (2016)

This table contains all exogenously set parameters of the IO-model. It also provides suggestions how to observe or estimate the parameters and gives
indications with respect to reasonable values.

In the subsequent subsection we develop a solution to our general optimization problem outlined in

Eq. (4.1) and compare the results of our IO-model to the results of pure illiquidity and overindebtedness

models. Thereafter, we discuss a possible extension to our optimization framework by endogenizing the
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covenant ratio δ. This allows us to investigate not only the influence of δ on the optimal solution but also

whether optimal δ values may exist. Finally, we apply the IO-model to publicly listed companies in the

US in order to judge whether our model may explain observed leverage ratios.

4.1. Identification of the Optimal Bankruptcy Trigger V∗B

This subsection investigates the optimal bankruptcy trigger V∗B via maximizing the equity value, i.e.

E(V)→ max (4.2)

⇔
∂E(V)
∂VB

= 0. (4.3)

Technically, we calculate the first derivative of the the equity value with respect to VB. As we face a

long complex value function we present the result based on the modular principle. We benefit from

this technique since the differentiation is linear. Additionally, beyond reducing complexity, this method

allows for investigating some boundary constraints, e.g. fixed costs equal to zero F = 0. Our proceeding

is related to the equity value function E(V) (c.f. Eq. (3.28)) consisting of the vector ~NB and ~D, the

unlevered firm value V , and the state price vector ~pr0. In turn, the state price vector ~pr0 consists of the

single state prices p0 to p3 derived in section 3.3 for the IO-model. The place holders a, b and y of p0 to p3

are constants. However, the place holders x and l of p0 to p3 are functions of VB (c.f. Eq. (3.16)-(3.17)).

We start with their first derivatives. The following holds:

∂x
∂VB

=
−1

VB + F(1 − τ)r−1 (4.4)

∂l
∂VB

=
−1

VB + F(1 − τ)r−1 (4.5)

∂(l − x)
∂VB

= 0. (4.6)

Please note that the first derivative x′ of x with respect to VB equals the first derivative l′ of l with

respect to VB. In the next step we want to calculate the derivatives of the state prices p0 to p3. Since p0 is

independent of VB we obtain:

∂p0

∂VB
= 0.

The same holds for p3. Thus, we have

∂p3

∂VB
= 0.

Consequently, it remains to calculate the derivatives of p1 and p2 which we do by applying ∂ sinh(x)
∂x =
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cosh(x):

p′1 =
∂p1

∂VB
=0 + e

a
σ2 (l−x)

b
σ2 x′ sinh′( b

σ2 x) sinh( b
σ2 l) − b

σ2 l′ sinh( b
σ2 x) sinh′( b

σ2 l)

sinh2( b
σ2 l)

=e
a
σ2 (l−x) b

σ2 x′
cosh( b

σ2 x) sinh( b
σ2 l) − sinh( b

σ2 x) cosh( b
σ2 l)

sinh2( b
σ2 l)

=e
a
σ2 (l−x) b

σ2 x′
sinh( b

σ2 (x − l))

sinh2( b
σ2 l)

=
−e

a
σ2 (l−x) b

σ2

VB + F(1 − τ)r−1 ·
sinh( b

σ2 (x − l))

sinh2( b
σ2 l)

.

For the derivative of the state price p2 we receive the following:

p′2 =
∂p2

∂VB
=
−a
σ2 x′e

−a
σ2 (l−x)

+ e
−a
σ2 (l−x)

b
σ2 (l − x)′ sinh′( b

σ2 (l − x)) sinh( b
σ2 l) − b

σ2 l′ sinh( b
σ2 (l − x)) sinh′( b

σ2 l)

sinh2( b
σ2 l)

=
−a
σ2 x′e

−a
σ2 (l−x)

+ e
−a
σ2 (l−x)−

b
σ2 l′ sinh( b

σ2 (l − x)) cosh( b
σ2 l)

sinh2( b
σ2 l)

=x′e
−a
σ2 (l−x)[

−a
σ2 −

b
σ2 ]

sinh( b
σ2 (l − x)) cosh( b

σ2 l)

sinh2( b
σ2 l)

=
e
−a
σ2 (l−x)

σ2[VB + F(1 − τ)r−1]
[a + b]

sinh( b
σ2 (l − x)) cosh( b

σ2 l)

sinh2( b
σ2 l)

.

Hence, we obtain the first derivative of the state price vector ~pr0 with respect to VB by using the

product and quotient rule, i.e.

∂ ~pr0

∂VB
=



1 +
p0 p1(1−p3)
(1−p1 p3)2

−p0(1−p1−p2)
(1−p1 p3)2

−p0 p2
(1−p1 p3)2

−p0
(1−p1 p3)2

−p0 p1
(1−p1 p3)2


. (4.7)

For the derivative of the net benefit vector ~NB and the debt vector ~D we have

∂ ~NB
∂VB

=



0

0

−α

0

0


,

∂ ~D
∂VB

=



0

0

1 − α

0

0


. (4.8)
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In summary, we have to solve the following equation with the help of the product rule and linearity

∂E(V)
∂VB

=
∂

∂VB
[V + (~(NB) −~(D)) ~pr0]. (4.9)

Thus, we arrive at

0 !
= 1 +

p0 p2

1 − p1 p3
+ ( ~NB − ~D) ~pr0

′. (4.10)

This implicit equation can be solved with the help of mathematical software such as Matlab and using

some known methods, e.g. Newton’s method.

Before we can compare the optimal bankruptcy trigger V∗BIO
from the IO-model with the optimal

bankruptcy trigger in a single barrier world, such as the model of Leland (1994) (overindebtedness) or

Couch et al. (2012) (illiquidity), we need to match the assumptions. As mentioned in section 3.1 we

refer to a revenue process. Thus, we have to transfer the firm’s asset approach in a single barrier world

into a revenue’s approach in a single barrier world9. Furthermore, two famous bankruptcy triggers are

known in literature. On the one hand bankruptcy is triggered when the firm is overindebted. Leland

(1994) investigates the implications to the optimal capital structure given this constraint. On the other

hand bankruptcy can be declared when the firm is illiquid or breaks a covenant. Couch et al. (2012) base

their investigations of valuing tax shields on this barrier. Adjusting the Leland model (overindebtedness)

to the revenue process yields the following optimal bankruptcy trigger V∗Bover
:

V∗Bover
=

y
1 + y

C(1 − τ)
r

− (1 −
y

1 + y
)
F(1 − τ)

r
. (4.11)

When the fixed costs F equal zero we generate the standard Leland solution. The appropriate optimal

bankruptcy trigger V∗Billiquid
given illiquidity as the bankruptcy criterion with fixed costs F equal to zero

resemble the standard solution given inCouch et al. (2012).

4.2. Identification of the Optimal Coupon Payment C

With the help of section 4.1 we are able to maximize our total firm value VL given the optimal

bankruptcy trigger V∗BIO
. This is done by endogenizing the coupon payments C. Thus, the coupon payment

is no longer fixed and considered as a constant. Rather, we compute the first derivative of the total firm

value VL subject to C. Finally, we set the first derivative of the total firm value equal to zero, i.e.

∂VL(V)
∂C

= 0. (4.12)

9 The firm’s asset approach is given by the diffusion process dV
V = µdt + σdW, where V represents the value of the firm’s

activities, µ the constant growth rate, σ the constant volatility, and W a standard Brownian motion. V is usually known as the
asset value of the firm.
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Solving this equation for the optimal coupon C∗IO maximizes the total firm value. We will now com-

pare the firm’s maximizing coupon payment C∗IO in a double barrier world with the firm maximizing

coupon payment C∗over and C∗illiquid that are generated when either overindebtedness or illiquidity are the

bankruptcy triggers. The following figure illustrates the findings graphically.

Figure 4: Optimal Capital Structure under the IO-Model, pure Illiquidity Model and pure Overindebtedness Model
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Figure 5: This figure analyzes the firm value (VL(V))-maximizing choice of coupon payments C for the IO-model in comparison to the classic
models of illiquidity and overindebtedness. The blue, dashed line represents VL(V) for different C with overindebtedness as a bankruptcy trigger. The
violet, solid line represents the IO-model and the black, dashed-dotted line depicts the case of illiquidity. The chosen model parameters are as follows:
r = 0.05, τ = 0.35, R0 = 25, µ = 0.02, σ = 0.20, γ = 0.70, F = 0, δ = 1 − τ, ε = 0.00, and ϕ = 2.5.

The figure shows the coupon level C subject to the total firm value VL. Each of the three para-

bles represent a different bankruptcy trigger. The curve on top is the function that arises if and only if

overindebtedness is the only bankruptcy trigger. Analogously, the curve on bottom is generated if and

only if illiquidity creates bankruptcy. The curve in the middle combines both approaches and represents

the total firm value function with respect to C of the IO-model. The figure depicts four main aspects.

(i) We can observe that all three curves are concave, i.e. there exists a global maximum. (ii) In case

of overindebtedness the total firm value with respect to C is greater than in case of illiquidity. Taking

both barriers into consideration provides a curve that lies in-between. (iii) The same holds true for the

optimal coupon payments, i.e. C∗illiquid < C∗IO < C∗over. Finally, (iv) if there is only overindebtedness as the

bankruptcy trigger, the optimal coupon payment C∗over is in the area of illiquidity. Thus, optimizing the

total firm value with overindebtedness as the bankruptcy criterion provokes directly illiquidity.

As the figure shows, the double barrier approach provides solution that are in-between the rough
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constraints of overindebtedness and illiquidity. This is in accordance with the intuition. Moreover, the

optimal coupon payment C∗IO of the IO-model is in the area of liquidity.

4.3. Extensions to the Optimization Framework - Endogenizing Debt Contract Parameters

The IO-model provides insights beyond the discussed framework where the optimal capital structure

is derived with an endogenously obtained V∗B but otherwise given parameters. For instance, it allows for

analyzing some standard debt contract parameters like the covenant ratio δ. We are able to determine its

impact on the optimal capital structure choice and to investigate whether an optimal δ exists. Figure 6

depicts the analysis results when C and δ can be freely chosen.

Figure 6: Levered Firm Value VL(V) in dependence of Covenant Ratio δ and Coupon Payment C
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The graph depicts how changing δ and C impacts VL(V). For lower delta values the maximum levered firm value VL,∗(V) is achieved with higher
choices of C∗ and vice versa. The global optimum is at the minimum δ of 1 − τ. The chosen model parameters are as follows: r = 0.05, τ = 0.35,
R0 = 25, µ = 0.02, σ = 0.20, γ = 0.70, F = 0, ε = 0.00, and ϕ = 2.5.

As Figure 6 reveals, a higher δ causes lower optimal choices of C∗ and also reduces the optimal

levered firm value VL,∗(V). The results may surprise as we usually observe δ values between 1 and 2 in

corporate debt contracts. Two reasons for the discrepancy are identified:

(i) Debtholders in our setting are risk-neutral, i.e. they are only interested in an expected net present

value of zero and do not discount riskier payoff structures. We demonstrate the effect of higher δ values

on the state price (discounted probability) of the BS in Table 2. Clearly, the state price pr0
(1−α)VB

decreases
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with increasing δ. Risk-averse debtholders value this fact while risk-neutral debtholders are indifferent.

Thus, we may have found an indication for risk-aversion of debtholders.

Table 2: Bankruptcy State Prices pr0
(1−α)VB

in dependence of the covenant ratio δ

δ C∗ VL,∗ L∗ = D(V)/VL,∗ pr0
(1−α)VB

0.65 3.40 177.79 0.37 0.21
0.75 3.00 176.56 0.35 0.20
0.85 2.70 175.59 0.32 0.20
0.95 2.40 174.80 0.30 0.18
1.05 2.20 174.15 0.29 0.18
1.15 2.00 173.59 0.27 0.17

The table illustrates how increasing δ values lead to a lower bankruptcy risk (represented by a lower bankruptcy state price). This shows that debt
holders which are not risk-neutral may actually insist on a δ greater than 1 − τ depending on their risk appetite.

(ii) Information are symmetrically distributed in our setting, i.e. debtholders know the true VB where

equityholders file for bankruptcy. However, in reality this information is most likely only known to the

equityholders themselves. Pretending a higher VB may result in better debt contracts. Debtholders shield

themselves against such behavior with increased covenant ratios. Please note that the analysis of (ii) will

be detailed in the next version of the working paper.

4.4. Empirical Application of the IO-Model

Finally, we test our model for firms publicly listed in the US. Our dataset, retrieved from Thomson-

Reuters EIKON, is based on the logic of the Center for Research in Security Prices (CRSP). We consider

all firms that have been listed on the NYSE, NASDAQ, NYSE MKT and NYSE ARCA between 1981

and 2016 including all leavers and joiners of this period. We exclude firms from finance and insurance

(NAICS sector code 52) as well as firms with inconsistent data (e.g. constantly negative revenues) or not

sufficient time series (less than 10 firm years). After these exclusions, our sample contains 4,845 firms

and 97,001 firm-year observations with non-missing values for revenues, costs of goods sold (COGS),

selling, general and administrative expenses (SGA), debt, total assets, and market capitalization.

In a first step we estimate the parameters of the stochastic revenue process, drift rate µ and standard

deviation σ. Moreover, we test whether the observed revenue paths could follow a geometric Brownian

motion (gBm) by applying the Jarque-Bera (JB) test for normal distribution. In total, at the 5% interval

we cannot reject the null hypothesis of the JB-test postulating that the considered process is not following

a gBm for 47.5% of the firms. Thus, our basic model requirement is valid for almost half of the publicly

listed firms in the US. Table 3 summarizes the test results for all NAICS sectors.

For the firms where the revenues follow a gBm we proceed with estimating the other parameters and

calculate the average observed leverage L = D(V)/VL(V). While we can retrieve the estimates for the

variable cost ratio γ and the fixed costs F from our dataset, we have to rely on other studies for the

other missing parameters. We follow Glover (2016) in his industry-specific estimates of the expected
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Table 3: Normal-Distribution Test of the log-changes of Rt

Jarque-Bera Test

N, Norm.-Dist. in %, Norm.-Dist.

NAICS Sector No. Of Firms (N) α = 0.05 α = 0.10 α = 0.05 α = 0.10 µ σ

Accommodation and Food Services 96 44 36 0.4583 0.3750 0.0264 0.1030
Administrative, Support, Waste, Remediation 105 42 31 0.4000 0.2952 0.0253 0.2175
Construction 77 33 29 0.4286 0.3766 0.0110 0.2190
Health Care and Social Assistance 103 31 27 0.3010 0.2621 0.0074 0.1824
Information 529 256 216 0.4839 0.4083 0.0199 0.1776
Manufacturing 1988 948 785 0.4769 0.3949 -0.0026 0.1526
Mining, Quarrying, and Oil and Gas Extraction 264 157 126 0.5947 0.4773 0.0117 0.2622
Professional, Scientific, and Technical Services 408 221 181 0.5417 0.4436 0.0014 0.1454
Real Estate and Rental and Leasing 204 77 66 0.3775 0.3235 0.0392 0.1912
Retail Trade 242 122 107 0.5041 0.4421 0.0438 0.1270
Transportation and Warehousing 143 56 46 0.3916 0.3217 0.0188 0.1607
Utilities 103 41 33 0.3981 0.3204 -0.0054 0.1780
Wholesale Trade 147 69 55 0.4694 0.3741 0.0269 0.2304
Others 110 48 41 0.4364 0.3727 0.0274 0.2014

The table depicts the results of the Jarque-Bera test for normal distribution which we apply to examine the log-changes of the stochastic process Rt .
The null hypothesis of the test is that the underlying process is normally distributed. Thus, choosing a higher significance level α leads to a higher
number of firms for which normal distribution is ruled out. The last two columns provide our estimations of the risk-neutral drift of the revenue process
µ and its standard deviation σ.

bankruptcy costs α. For the illiquidity expenses ε and the average covenant ratio δ industry-specific

estimates are not yet available. Thus, we apply the general estimates of Ertan and Karolyi (2016) to all

industries. Please note that we have indexed the initial level of the stochastic process R0 to 100 in order

to make all firms comparable. Table 4 summarizes our input choices.

To conclude, we obtain the optimal leverage based on the IO-model as well as for the pure illiquidity

and pure overindebtedness model. These results are compared to the observed leverage ratios. The results

are shown in Table 5.

The leverage ratios estimated by the IO-model show the lowest absolute deviation (Abs. Dev.) from

the observed leverage except for the sector “Real Estate and Rental and Leasing” where the overindebt-

edness model performs slightly better. The IO-estimates lie within the one standard error range for 3

of the sectors and within a two standard error range for another 3 sectors. The pure illiquidity model

underestimates optimal leverage consistently in all sectors while the pure overindebtedness model leads

consistently to overestimation. None of the two models achieves results within one or two standard errors

from the observed leverage. The results prove that the IO-model is a major step in explaining observed

leverage ratios and delivers a new unique contribution to the capital structure literature.

5. Conclusion

This article establishes the first dynamic corporate valuation model incorporating an illiquidity trigger

and a bankruptcy trigger in a double barrier framework.

First, we introduce a general model of our framework which we carefully develop towards definitions

of state prices and payout structures. Subsequently, we apply the general model to corporate valuation and
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Table 4: Input Parameters of the IO-Model and Observed Leverage

NAICS Sector α ε δ γ F R0 L = D(V)/VL(V)

Accommodation and Food Services 0.3890 0.04 1.00 0.6195 14.00 100 0.4594
Administrative, Support, Waste, Remediation 0.4740 0.04 1.00 0.5110 23.04 100 0.1994
Construction 0.3740 0.04 1.00 0.7220 18.83 100 0.4405
Health Care and Social Assistance 0.4740 0.04 1.00 0.2483 51.35 100 0.5497
Information 0.4740 0.04 1.00 0.3941 25.37 100 0.2927
Manufacturing 0.3970 0.04 1.00 0.6915 15.85 100 0.3071
Mining, Quarrying, and Oil and Gas Extraction 0.4630 0.04 1.00 0.5165 11.42 100 0.2535
Professional, Scientific, and Technical Services 0.4740 0.04 1.00 0.5131 33.90 100 0.2225
Real Estate and Rental and Leasing 0.4740 0.04 1.00 0.4066 14.27 100 0.5412
Retail Trade 0.4420 0.04 1.00 0.7026 19.19 100 0.2714
Transportation and Warehousing 0.4130 0.04 1.00 0.4513 27.16 100 0.4286
Utilities 0.4740 0.04 1.00 0.3518 33.02 100 0.4531
Wholesale Trade 0.4420 0.04 1.00 0.7382 23.74 100 0.2923
Others 0.4598 0.04 1.00 0.5824 23.69 100 0.2683

The table provides an overview of the chosen input parameters for each NAICS sector. For the bankruptcy costs α we follow the estimates of Glover
(2016). Regarding the illiquidity expenses ε and the average covenant ratio δ industry-specific estimates are not yet available. Thus, we apply the
general estimates of Ertan and Karolyi (2016) to all industries. The starting point of the stochastic revenue process R0 is indexed to 100. The estimates
for the variable cost ratio γ and the fixed costs F are based on all normally distributed firms in our sample from NASDAQ, NYSE, NYSE ARCA, and
NYSE MKT. F has been related to the index of R0. The leverage ratio L = D(V)/VL(V) is based on our sample, too.

Table 5: Optimal Capital Structure Estimates versus Observed Leverage for NAICS Sectors

Observed Illiquidity IO-Model Overindebtedness

NAICS Sector L 1 Std. Err. L∗ Abs. Dev. L∗ Abs. Dev. L∗ Abs. Dev.
Accommodation and Food Services 0.4594 0.0742 0.1861 0.2734 0.3096 0.1498 0.7942 0.3348
Administrative, Support, Waste, Remediation 0.1994 0.0380 0.1599 0.0394 0.2985 0.0991 0.8064 0.6071
Construction 0.4405 0.0376 0.1442 0.2962 0.3658 0.0747 0.6620 0.2215
Health Care and Social Assistance 0.5497 0.0430 0.0662 0.4835 0.4627 0.0871 0.6554 0.1057
Information 0.2927 0.0160 0.0316 0.2611 0.2236 0.0691 0.8629 0.5703
Manufacturing 0.3071 0.0084 0.0472 0.2599 0.3252 0.0181 0.6746 0.3675
Mining, Quarrying, and Oil and Gas Extraction 0.2535 0.0142 0.0125 0.2410 0.2450 0.0085 0.6359 0.3824
Professional, Scientific, and Technical Services 0.2225 0.0127 0.0974 0.1251 0.2227 0.0003 0.6897 0.4672
Real Estate and Rental and Leasing 0.5412 0.0268 0.0149 0.5263 0.1584 0.3828 0.7198 0.1786
Retail Trade 0.2714 0.0170 0.0412 0.2302 0.3017 0.0303 0.6859 0.4145
Transportation and Warehousing 0.4286 0.0252 0.0452 0.3834 0.2446 0.1840 0.7138 0.2852
Utilities 0.4531 0.0259 0.0104 0.4427 0.4583 0.0051 0.6323 0.1791
Wholesale Trade 0.2923 0.0337 0.0459 0.2464 0.1329 0.1594 0.6626 0.3703
Others 0.2683 0.0242 0.0936 0.1747 0.1689 0.0994 0.6880 0.4197

This table summarizes the optimal leverage ratios L∗ = D(V)/VL,∗(V) generated by the IO-model, and for a pure illiquidity or overindebtedness trigger.
The results are compared to the observed average leverage L for all NAICS sectors. The absolute deviation towards the observed leverage is depicted
for each of the three models (Abs. Dev.).
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the problem of optimal capital structure. Thereby, we create the illiquidity-overindebtedness (IO-) model

which allows us to price all components of debt and equity value. Finally, we compare our solution to the

two classic cases of only considering one of the two boundaries. The results we obtain lie in-between and

explain observed capital structure choices much better than the existing models as we demonstrate by an

empirical study of the US market.

Moreover, our general model proves to be relevant in many other research areas. Two examples

may be mentioned: (i) The problem of modeling optimal counter-cyclical policies (monetary policy and

government investment programs) could be treated in such a framework where the lower-upper boundary

(illiquidity) triggers e.g. an investment program for a specific industry. Hitting the lower boundary

(bankruptcy) could lead to a stop of the program as there is no positive prospect for the industry and

the upper-upper boundary could represent a stop of the program as the industry has recovered. (ii) In a

biological application, the flu diffusion can be described with our model as it stays normally within an

endemic steady state but can suddenly become epidemic (or indeed pandemic like the 1918 flu pandemic)

if its infection rate surpasses a special critical value, and it can also return to endemic state.

The model also provides a good base for further extensions. For instance, it is sometimes observed

in reality that the stochastic process jumps whenever the illiquidity boundary is hit which is easily im-

plementable into the existing framework. Additionally, adjustments in the payout structure can be simply

executed as we provide a general framework for all kinds of payout. Beyond that further empirical studies

in the field of corporate finance (e.g. cost of capital, probability of default) can be based upon the model.
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